Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.

Identifieur interne : 001E02 ( Main/Exploration ); précédent : 001E01; suivant : 001E03

Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.

Auteurs : Celine Caseys [Canada] ; Christoph Stritt [Suisse] ; Gaetan Glauser [Suisse] ; Thierry Blanchard [Suisse] ; Christian Lexer [Autriche]

Source :

RBID : pubmed:26010156

Descripteurs français

English descriptors

Abstract

The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.

DOI: 10.1371/journal.pone.0128200
PubMed: 26010156
PubMed Central: PMC4444209


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.</title>
<author>
<name sortKey="Caseys, Celine" sort="Caseys, Celine" uniqKey="Caseys C" first="Celine" last="Caseys">Celine Caseys</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver</wicri:regionArea>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique</region>
</placeName>
<orgName type="university">Université de Fribourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Stritt, Christoph" sort="Stritt, Christoph" uniqKey="Stritt C" first="Christoph" last="Stritt">Christoph Stritt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Glauser, Gaetan" sort="Glauser, Gaetan" uniqKey="Glauser G" first="Gaetan" last="Glauser">Gaetan Glauser</name>
<affiliation wicri:level="1">
<nlm:affiliation>Neuchâtel Platform of Analytical Chemistry, Faculty of science, University of Neuchâtel, Neuchâtel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Neuchâtel Platform of Analytical Chemistry, Faculty of science, University of Neuchâtel, Neuchâtel</wicri:regionArea>
<wicri:noRegion>Neuchâtel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blanchard, Thierry" sort="Blanchard, Thierry" uniqKey="Blanchard T" first="Thierry" last="Blanchard">Thierry Blanchard</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lexer, Christian" sort="Lexer, Christian" uniqKey="Lexer C" first="Christian" last="Lexer">Christian Lexer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Botany and Biodiversity Research, University of Vienna, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
<orgName type="university">Université de Fribourg</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26010156</idno>
<idno type="pmid">26010156</idno>
<idno type="doi">10.1371/journal.pone.0128200</idno>
<idno type="pmc">PMC4444209</idno>
<idno type="wicri:Area/Main/Corpus">001C79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C79</idno>
<idno type="wicri:Area/Main/Curation">001C79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001C79</idno>
<idno type="wicri:Area/Main/Exploration">001C79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.</title>
<author>
<name sortKey="Caseys, Celine" sort="Caseys, Celine" uniqKey="Caseys C" first="Celine" last="Caseys">Celine Caseys</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver</wicri:regionArea>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique</region>
</placeName>
<orgName type="university">Université de Fribourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Stritt, Christoph" sort="Stritt, Christoph" uniqKey="Stritt C" first="Christoph" last="Stritt">Christoph Stritt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Glauser, Gaetan" sort="Glauser, Gaetan" uniqKey="Glauser G" first="Gaetan" last="Glauser">Gaetan Glauser</name>
<affiliation wicri:level="1">
<nlm:affiliation>Neuchâtel Platform of Analytical Chemistry, Faculty of science, University of Neuchâtel, Neuchâtel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Neuchâtel Platform of Analytical Chemistry, Faculty of science, University of Neuchâtel, Neuchâtel</wicri:regionArea>
<wicri:noRegion>Neuchâtel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blanchard, Thierry" sort="Blanchard, Thierry" uniqKey="Blanchard T" first="Thierry" last="Blanchard">Thierry Blanchard</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lexer, Christian" sort="Lexer, Christian" uniqKey="Lexer C" first="Christian" last="Lexer">Christian Lexer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Botany and Biodiversity Research, University of Vienna, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
<orgName type="university">Université de Fribourg</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chimera (genetics)</term>
<term>Chimera (metabolism)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Propanols (metabolism)</term>
<term>Quantitative Trait Loci (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chimère (génétique)</term>
<term>Chimère (métabolisme)</term>
<term>Locus de caractère quantitatif (physiologie)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Propanols (métabolisme)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Propanols</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chimera</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chimère</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chimera</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chimère</term>
<term>Populus</term>
<term>Propanols</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Locus de caractère quantitatif</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26010156</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.</ArticleTitle>
<Pagination>
<MedlinePgn>e0128200</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0128200</ELocationID>
<Abstract>
<AbstractText>The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Caseys</LastName>
<ForeName>Celine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stritt</LastName>
<ForeName>Christoph</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Glauser</LastName>
<ForeName>Gaetan</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Neuchâtel Platform of Analytical Chemistry, Faculty of science, University of Neuchâtel, Neuchâtel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blanchard</LastName>
<ForeName>Thierry</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lexer</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020005">Propanols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0F897O3O4M</RegistryNumber>
<NameOfSubstance UI="C439395">1-phenylpropanol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002678" MajorTopicYN="Y">Chimera</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="Y">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020005" MajorTopicYN="N">Propanols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>02</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26010156</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0128200</ArticleId>
<ArticleId IdType="pii">PONE-D-15-04593</ArticleId>
<ArticleId IdType="pmc">PMC4444209</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2008;177(2):506-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Nov;10(11):542-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2002 Apr;88(4):221-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11920127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2013 Jun;16(6):791-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23601188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 Mar;18(6):1207-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Aug;191(3):589-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21770942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2012;63:431-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22404468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2013 Jan;67(1):34-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23289560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2015 Jan;69(1):75-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25338665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1667-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Oct 5;338(6103):116-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23042895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Sep;5(9):380-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2010 Mar;36(3):286-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20177744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Sep;23 (17 ):4316-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1999 Feb;16(2):266-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10028292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1497-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2012 Jan;66(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22220860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2002 Mar;159 Suppl 3:S36-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 May;54(4):750-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18476876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Oct;186(2):699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20679517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):510-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Oct 5;338(6103):113-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23042894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2014 Jun 24;15:76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24962214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2006 Jun;7(2):151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16772265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Aug 1;33(8):1239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20374534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2010 Feb;26(2):54-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Oct;21(20):5042-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22989336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2008 Mar 05;8:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 19;8(11):e79925</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24260320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2010 Jun;163(2):283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20012101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1996 Jun;50(3):1074-1082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:549-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21275647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Aug 29;301(5637):1211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12907807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e38724</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22737218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2007 Jun;169(6):725-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17479459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochem Rev. 2011 Mar;10(1):107-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21475395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Apr;66(1):182-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21443631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2010 Dec;164(4):993-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20680646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 May;26(5):1045-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19188263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Aug;207(3):723-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25817433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jul;47(2):224-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16774647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 May 2;344(6183):510-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24786077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>For Ecol Manage. 2004 Aug;197(1-3):49-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18677413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Apr;15(5):1379-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9939-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19528641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Ecol. 2011 Apr;25(2):312-324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21532968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Aug;65(15):4191-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24803501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2012 Jul;28(7):342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22520730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18054-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19815508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Feb;22(3):842-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22967258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2009 Jan;102(1):31-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18648386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 09;9(10):e107189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25299342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4032-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25775585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Apr;19(8):1638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2013 Dec;111(6):474-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23860234</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Autriche</li>
<li>Canada</li>
<li>Suisse</li>
</country>
<region>
<li>Canton de Fribourg</li>
<li>Colombie-Britannique</li>
<li>Vienne (Autriche)</li>
</region>
<settlement>
<li>Fribourg</li>
<li>Vancouver</li>
<li>Vienne (Autriche)</li>
</settlement>
<orgName>
<li>Université de Fribourg</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Colombie-Britannique">
<name sortKey="Caseys, Celine" sort="Caseys, Celine" uniqKey="Caseys C" first="Celine" last="Caseys">Celine Caseys</name>
</region>
</country>
<country name="Suisse">
<region name="Canton de Fribourg">
<name sortKey="Stritt, Christoph" sort="Stritt, Christoph" uniqKey="Stritt C" first="Christoph" last="Stritt">Christoph Stritt</name>
</region>
<name sortKey="Blanchard, Thierry" sort="Blanchard, Thierry" uniqKey="Blanchard T" first="Thierry" last="Blanchard">Thierry Blanchard</name>
<name sortKey="Glauser, Gaetan" sort="Glauser, Gaetan" uniqKey="Glauser G" first="Gaetan" last="Glauser">Gaetan Glauser</name>
</country>
<country name="Autriche">
<region name="Vienne (Autriche)">
<name sortKey="Lexer, Christian" sort="Lexer, Christian" uniqKey="Lexer C" first="Christian" last="Lexer">Christian Lexer</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26010156
   |texte=   Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26010156" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020